Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Crit Rev Microbiol ; 43(4): 466-480, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28502224

RESUMO

Tuberculosis (TB) is a major public health problem, invading all age groups world-wide. It is an opportunistic infection affecting the individuals alone or with co-infections. Childhood TB is a neglected aspect and a significant health problem in epidemic areas. It constitutes more than 20% of TB incidence. Pediatric TB exists in the shadow of adult TB. The clinicians concentrate on pulmonary manifestation of TB, whereas it is a major problem in both pulmonary and extra-pulmonary infections. The rate of infection with this disease is mostly associated with poverty, social disruption and human immunodeficiency virus (HIV) infection. The diagnosis of extra-pulmonary TB (EPTB) is more difficult than pulmonary TB (PTB). Delayed diagnosis and executive treatment contribute to increase in the mortality rate in endemic areas. This article provides the evidence-based simple and safe screening method, indicating rapid, highly sensitive and specific diagnostic tests for pulmonary and EPTB in children. The most important aspect of treatment is the correct course of anti-tubercular drugs. This review serves the purpose of quick reference for microbiologists, epidemiologists, academicians, students and researchers. It provides guidance regarding early diagnosis and treatment accuracy of pediatric TB.


Assuntos
Otite Média/diagnóstico , Tuberculoma/diagnóstico , Tuberculose dos Linfonodos/diagnóstico , Tuberculose Meníngea/diagnóstico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/epidemiologia , Tuberculose da Coluna Vertebral/diagnóstico , Tuberculose Urogenital/diagnóstico , Adulto , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Otite Média/microbiologia , Tuberculoma/microbiologia , Tuberculose dos Linfonodos/microbiologia , Tuberculose Meníngea/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Tuberculose da Coluna Vertebral/microbiologia , Tuberculose Urogenital/microbiologia
3.
J Exp Ther Oncol ; 11(4): 251-260, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27849335

RESUMO

Trichothecenes are powerful mycotoxins that inhibit protein synthesis and induce ribotoxic stress response in mammalian cells. Verrucarin A (VC-A) is a Type D macrocyclic mycotoxin which inhibits cell proliferation and induces apoptosis in cancer cells. However, the antitumor activity of VC-A for prostate cancer cells has not been investigated. The objective of the present study was to determine the anticancer activity and its mechanism of action in hormone-responsive (LNCaP) and hormone-refractory (PC-3) carcinoma of the prostate (CaP) cell lines. VC-A strongly inhibited the proliferation and induced cell cycle arrest in G2/M phase associated with the inhibition of cell cycle regulatory proteins cyclin D, cyclin E, cyclin-dependent kinases (cdks) cdk2, cdk4, cdk6 and cdk inhibitors WAF1/21 and KIP1/27. VC-A also induced apoptosis in CaP cells as characterized by the cleavage of poly (ADP-ribose) polymerase (PARP-1), procaspases-3, -8 and -9 and the inhibition of Bcl-2 family proteins that regulate apoptosis (Bcl-2, Bcl-xL, Bax, Bak and Bad). In addition, VC-A also down-regulated the expression of prosurvival phospho-AKT (p-AKT), nuclear factor kappa B (NF-kB) (p65) and phospho-mammalian target of rapamycin (p-mTOR) signaling proteins. Taken together, these results demonstrated strong antiproliferative and apoptosis-inducing activity of verrucarin A against CaP cells through cell cycle arrest and inhibition of the prosurvival (antiapoptotic) AKT/NF-kB/mTOR signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , NF-kappa B/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tricotecenos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Masculino , Micotoxinas/farmacologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Int J Oncol ; 49(3): 1139-47, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27573873

RESUMO

Pancreatic ductal adenocarcinoma (PDA) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDA. Trichothecenes are powerful mycotoxins that inhibit protein synthesis and induce ribotoxic stress response in mammalian cells. Verrucarin A (VC-A) is a Type D macrocyclic mycotoxin which inhibited cell proliferation and induced apoptosis in breast cancer cells. However, the antitumor activity of VC-A for PDA cells has not been investigated. Here we show potent antitumor activity and the mechanism of action of VC-A in PDA cell lines. VC-A strongly inhibited the proliferation and arrested cells in the S phase of the cell cycle. The blocking of cell cycle progression by VC-A was associated with the inhibition of cell cycle regulatory proteins cyclin D1, cyclin E, cyclin-dependent kinases (cdks) cdk2, cdk4 and cdk inhibitor WAF1/21. VC-A induced apoptosis in PDA cells as indicated by the increased Annexin V FITC-binding, cleavage of poly(ADP-ribose) polymerase­1 (PARP-1) and procaspases-3, -8 and -9. VC-A also induced mitochondrial depolarization and release of cytochrome c and it inhibited Bcl-2 family proteins that regulate apoptosis (Bcl-2, Bcl-xL, Bax and Bad). In addition, VC-A reduced the levels of inhibitors of apoptosis survivin and c-IAP-2. Finally, VC-A downregulated the expression of prosurvival phospho-Akt (p-Akt), nuclear factor κB (NF-κB) (p65) and mammalian target of rapamycin (p-mTOR) signaling proteins and their downstream mediators. Together, these results demonstrated strong antiproliferative and apoptosis-inducing activity of verrucarin A for PDA cells through cell cycle arrest and inhibition of the prosurvival (antiapoptotic) AKT/NF-κB/mTOR signaling.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tricotecenos/farmacologia , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos
5.
J Exp Ther Oncol ; 11(3): 181-188, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28471123

RESUMO

Pristimerin (PM) is a quinonemethide triterpenoid with cytotoxic activity against a wide range of cancer cell lines. However, the effect of PM on IL-2 induced activation of T lymphocytes, which play a major role in antitumor immunity has not been studied. The objective of the present study was to evaluate the effect of PM on IL-2 induced proliferation of T cells, generation of lymphokine activated killer cells (LAK cells) and the signaling pathways involved in activation of T cells by IL-2. PM inhibited the IL-2 induced proliferation of mouse splenic T cells and the generation LAK cells at very low concentrations. The suppression of T cell proliferation by PM was associated with the inhibition of IL-2 induced Janus kinase/signal transducers and activators of transcription (Jak/STAT) and extracellular signal-regulated kinase 1 and 2 (Erk1/2) signaling pathways. PM also inhibited the proliferation and differentiation-related immediate early gene products such as p-c-fos, p-c-jun, c-myc and cyclin D1. In addition, antiapoptotic (prosurvival) NF-кB, p-Akt and p-mTOR were also inhibited by PM. These data demonstrated that PM inhibits IL-2 induced T cell activation and generation of LAK cells by disrupting multiple cell signaling pathways induced by IL-2.


Assuntos
Antineoplásicos/farmacologia , Interleucina-2/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Baço/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Janus Quinases/metabolismo , Células Matadoras Ativadas por Linfocina/efeitos dos fármacos , Células Matadoras Ativadas por Linfocina/imunologia , Células Matadoras Ativadas por Linfocina/metabolismo , Camundongos , Triterpenos Pentacíclicos , Fosforilação , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
6.
Int J Oncol ; 47(6): 2100-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26497549

RESUMO

Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) has shown potent antitumorigenic activity against a wide range of cancer cell lines in vitro and inhibited the growth of liver, lung and prostate cancer in vivo. In the present study, we examined the antitumor activity of CDDO-Me for pancreatic ductal adenocarcinoma (PDAC) cells with and without activating K-ras mutations. Treatment of K-ras mutant MiaPaCa-2 and K-ras normal BxPC-3 cells with CDDO-Me elicited strong antiproliferative and proapoptopic responses in both cell lines in culture. The inhibition of cell proliferation and induction of apoptosis was accompanied by the inhibition of antiapoptotic/prosurvival p-Akt, NF-кB and p-mTOR signaling proteins. For testing efficacy of CDDO-Me in vivo heterotopic and orthotopic xenografts were generated by implanting BxPC-3 and MiaPaCa-2 cells subcutaneously and in the pancreatic tail, respectively. Treatment with CDDO-Me significantly inhibited the growth of BxPC-3 xenografts and reduced the levels of p-Akt and p-mTOR in tumor tissue. In mice with orthotopic MiaPaCa-2 xenografts, treatment with CDDO-Me prolonged the survival of mice when administered following the surgical resection of tumors. The latter was attributed to the eradication of residual PDAC remaining after resection of tumors. These preclinical data demonstrate the potential of CDDO-Me for treating primary PDAC tumors and for preventing relapse/recurrence through the destruction of residual disease.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/patologia , Recidiva Local de Neoplasia/prevenção & controle , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/patologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos SCID , Ácido Oleanólico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Exp Ther Oncol ; 11(1): 41-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26259389

RESUMO

Pristimerin (PM) is a quinonemethide triterpenoid present in various plant species with strong antiprolifertive and proapoptotic activities in cancer cells. The effect of PM on telomerase which is reactivated in most cancers including carcinoma of the prostate (CaP) has not been studied. We investigated the effect of PM on the expression of human telomerase reverse transcriptase (hTERT) gene that codes for the catalytic subunit of the telomerase holoenzyme complex in prostate cancer cell lines LNCaP and PC-3 cells. The inhibition of cell proliferation and induction of apoptosis by PM in both cell lines was associated with the inhibition of hTERT mRNA expression, suppression of native and phosphorylated hTERT protein and hTERT telomerase activity. The ablation of hTERT expression increased the sensitivity of cancer cells to PM. In addition, results also revealed that the inhibition of hTERT expression is attributed to the inhibition of transcription factors SP1, c-Myc and STAT3 and protein kinase B/Akt which regulate hTERT transcriptionally and post-translationally, respectively. These data provide evidence that telomerase is a potential target of PM in prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias da Próstata/enzimologia , Telomerase/antagonistas & inibidores , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Triterpenos Pentacíclicos , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Telomerase/genética , Telomerase/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção
8.
Oncol Rep ; 34(1): 518-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25997419

RESUMO

Pristimerin (PM) is a promising anticancer agent that has exhibited strong antiproliferative and apoptosis-inducing activity in various types of cancer cells. In the present study, we investigated the role of telomerase in mediating the antitumor activity of PM in pancreatic ductal adenocarcinoma (PDA) cells. PM inhibited cell proliferation, arrested cells in the G1 cell cycle phase and induced apoptosis in MiaPaCa-2 and Panc-1 PDA cells. These antitumor activities of PM correlated well with the inhibition of human telomerase reverse transcriptase (hTERT), the gene that codes for the catalytic subunit of telomerase complex. Gene knockin and knockdown approaches demonstrated that hTERT regulates the response of PDA cells to PM. PM inhibited hTERT expression by suppressing the transcription factors Sp1, c-Myc and NF-κB which control hTERT gene expression. PM also inhibited protein kinase Akt, which phosphorylates and facilitates hTERT nuclear importation and its telomerase activity. These findings identified hTERT (telomerase) as a potential therapeutic target of PM for the treatment of PDA.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Telomerase/metabolismo , Triterpenos/farmacologia , Apoptose , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Triterpenos Pentacíclicos , Telomerase/genética
9.
J Exp Ther Oncol ; 10(4): 275-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25509983

RESUMO

Pristimerin isaquinonemethidetriterpenoidthathasshown anticancer activity against some cancer types. However, the antitumor effects of pristimerin (PM) in ovarian cancer cells have not been adequately studied. The objective of the present study was to determine the anticancer activity and its mechanism of action in human ovarian carcinoma cell lines. PM strongly inhibited the proliferation of ovarian cancer cells by inducing apoptosis characterized by increased annexin V-binding, cleavage of poly (ADP-ribose) polymerase (PARP-1) and procaspases-3, -8 and -9. Furthermore, PM caused mitochondrial depolarization. Western blot analysis showed inhibition of prosurvival phospho-AKT (p-AKT), nuclear factor kappa B (NF-κB) (p65) and phospho-mammalian target of rapamycin (p-mTOR) signaling proteins in cells treated with PM. Treatment with PM also inhibited the expression of NF-κB-regulated antiapoptotic Bcl-2, Bcl-xL, c-IAP1 and survivin. Thus, our data showing potent antiproliferative and apoptosis-inducing activity of PM in ovarian carcinoma cells through the inhibition of AKT/ NF-κB/ mTOR signaling pathway warrant further investigation of PM for the management of ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , NF-kappa B/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Int J Oncol ; 45(4): 1735-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25175770

RESUMO

Pristimerin (PM), a quinonemethide triterpenoid, is a promising anticancer agent with potent antiproliferative and apoptosis-inducing activities against cancer cell lines. However, the anticancer activity and mechanisms of PM in prostate cancer cells have not been adequately investigated. Here we report that the degradation of survivin plays an important role in the antiproliferative and proapoptotic effects of PM in carcinoma of the prostate (CaP) cell lines. Treatment with PM inhibited proliferation and induced apoptosis in LNCaP and PC-3 cells as characterized by the loss of cell viability and an increase in Annexin V-binding and cleavage of PARP-1, respectively. The antiproliferative and apoptosis-inducing effects of PM were associated with the inhibition of cell cycle regulatory proteins, antiapoptotic survivin and members of the Bcl-2 family. Data showed that response to PM is regulated by survivin since overexpression of survivin rendered CaP cells resistant to PM. Furthermore, downregulation of survivin by PM was mediated through the ubiquitin-proteasomal degradation. Together, these data demonstrate that pristimerin inhibits proliferation and induces apoptosis in CaP cells by abolishing survivin through the ubiquitin-proteasome pathway.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Triterpenos/farmacologia , Ubiquitina/metabolismo , Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Triterpenos Pentacíclicos , Survivina
11.
J Carcinog Mutagen ; 5: 177, 2014 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-25152840

RESUMO

Reactivation of telomerase in cancers provides an attractive target for developing novel agents to selectively destroy tumor cells. Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a synthetic oleanane triterpenoid, inhibited cell proliferation and induced apoptosis in pancreatic cancer cells at very low concentrations. The antiproliferative and apoptosis-inducing effects of CDDO-Me were associated with the inhibition of human telomerase reverse transcriptase (hTERT) mRNA, hTERT protein and reduction in hTERT telomerase activity. CDDO-Me inhibited multiple transcription factors that regulate hTERT expression positively (Sp1, c-Myc and NF-κB) and negatively (CTCF, E2F-1 and MAD1). CDDO-Me inhibited protein levels of DNA methyl transferases DNMT1 and DNMT3a, which also resulted in hypomethylation of hTERT promoter. In addition, transcriptionally active chromatin markers, such as acetylated histone H3 (Lys 9), acetylated histone H4, di-methyl H3 (Lys 4) and tri-methyl H3 (Lys 9) were all reduced in pancreatic cancer cells treated with CDDO-Me. Chromatin immunoprecipitation analysis showed decreased histone deacetylation and histone demethylation at hTERT promoter. Collectively, these results indicate that down-regulation of telomerase through epigenetic mechanisms plays a critical role in induction of apoptosis in pancreatic cancer cells by CDDO-Me.

12.
Int J Oncol ; 44(5): 1707-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24603988

RESUMO

Lack of effective therapeutics for pancreatic cancer at the present time underscores the dire need for safe and effective agents for the treatment of this malignancy. In the present study, we have evaluated the anticancer activity and the mechanism of action of pristimerin (PM), a quinonemethide triterpenoid, against MiaPaCa-2 and Panc-1 pancreatic ductal adenocarcinoma (PDA) cell lines. Treatment with PM inhibited the proliferation and induced apoptosis in both cell lines as characterized by the increased Annexin V-binding and cleavage of PARP-1 and procaspases -3, -8 and -9. PM also induced mitochondrial depolarization and the release of cytochrome c from the mitochondria. The induction of apoptosis by PM was associated with the inhibition of the pro-survival Akt, NF-κB and mTOR signaling proteins and their downstream intermediaries such as Foxo-3α and cyclin D1 (Akt); Cox-2 and VEGF (NF-κB); p-S6K1 and p-4E-BP1 (mTOR) as well as PKCε. Treatment with PM also inhibited the expression of anti-apoptotic Bcl-2 and survivin but not Bcl-xL. The downregulation of Bcl-2 by PM was not due to proteasomal or lysosomal proteolytic degradation of Bcl-2, since treatment with PM in the presence of proteasomal inhibitors MG132 or lactacystin (LAC) or calpain inhibitor MG101 failed to block the downregulation of Bcl-2 by PM. On the other hand, RT-PCR analysis showed the inhibition of Bcl-2 mRNA by PM in a dose-related manner, indicating that inhibition of Bcl-2 by PM is mediated through the suppression of Bcl-2 gene expression. Thus, the mechanistic understanding of the antitumor activity of pristimerin could facilitate in vivo efficacy studies of pristimerin for pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Técnicas In Vitro , Mitocôndrias/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Molecules ; 18(3): 3250-65, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23486104

RESUMO

Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a synthetic derivative of oleanolic acid, a triterpene, with apoptosis-inducing activity in a wide range of cancer cells. Induction of apoptosis by CDDO-Me is associated with the generation of reactive oxygen species (ROS) and inhibition of telomerase activity. In the present study, we investigated the role of ROS in inhibition of telomerase by CDDO-me. Treatment of MiaPaCa-2 and Panc-1 pancreatic cancer cell lines with CDDO-Me induced the production of hydrogen peroxide and superoxide anions and inhibited the telomerase activity. Pretreatment of cells with N-acetylcycsteine, a general purpose antioxidant or overexpression of glutathione peroxidase (GPx) or superoxide dismutase-1 (SOD-1) blocked the telomerase inhibitory activity of CDDO-Me. Furthermore, blocking ROS generation also prevented the inhibition of hTERT gene expression, hTERT protein production and expression of a number of hTERT-regulatory proteins by CDDO-Me (e.g., c-Myc, Sp1, NF-κB and p-Akt). Data also showed that Akt plays an important role in the activation of telomerase activity. Together, these data suggest that inhibition of telomerase activity by CDDO-Me is mediated through a ROS-dependent mechanism; however, more work is needed to fully understand the role of ROS in down-regulation of hTERT gene and hTERT-regulatory proteins by CDDO-Me.


Assuntos
Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Telomerase/antagonistas & inibidores , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Telomerase/genética , Telomerase/metabolismo
14.
J Carcinog Mutagen ; Suppl 6: 005, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24877026

RESUMO

Pristimerin is a quinonemethide triterpenoid with the potential of a promising anticancer agent. Pristimerin (PM) has shown anticancer activity against a range of cancer cell lines, but its activity for prostate cancer has not been adequately investigated. In the present study we have examined the underlying mechanisms of the apoptotic response of the hormone-sensitive (LNCaP) and hormone-refractory (PC-3) prostate cancer cell lines to PM. Treatment with PM induced apoptosis in both cell lines as characterized by increased annexin V-binding and cleavage of PARP-1 and procaspases-3 and -9. It also induced mitochondrial depolarization, cytochrome c release from mitochondria and generation of reactive oxygen species (ROS). Response to PM is regulated by Bcl-2 since it down-regulated Bcl-2 expression and overexpression of Bcl-2 rendered prostate cancer cells resistant to PM. ROS plays a role in down-regulation of Bcl-2, since treatment with PM in the presence of various ROS modulators, e.g., n-acetylcysteine (NAC), a general purpose antioxidant; diphenylene iodonium (DPI), a NADPH inhibitor; rotenone (ROT), a mitochondrial electron transport chain interrupter rotenone or MnTBAP, a O2 scavenger, attenuated the down-regulation of Bcl-2. Furthermore, ROS is also involved in the ubiquitination and proteasomal degradation of Bcl-2 as both of these events were blocked by O 2- scavenger MnTBAP. Thus, pristimerin induces apoptosis in prostate cancer cells predominately through the mitochondrial apoptotic pathway by inhibiting antiapoptic Bcl-2 through a ROS-dependent ubiquitin-proteasomal degradation pathway.

15.
Anticancer Res ; 33(1): 215-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23267148

RESUMO

Oleanane triterpenoids are broad-spectrum antiproliferative and proapoptotic agents. In this study, we investigated whether reactive oxygen species (ROS) play a role in the antitumor activity of methyl-2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oate (CDDO-Me) in OVCAR-5 and MDAH 2774 ovarian cancer cells. Treatment with CDDO-Me caused the generation of ROS (H(2)O(2)) and pre-treatment with N-acetylcysteine (NAC) prevented the generation of ROS. NAC also blocked the inhibition of cell proliferation by CDDO-Me. Likewise, NAC prevented the CDDO-Me-caused binding of fluorescein isothiocyanate (FITC)-tagged annexin V, cleavage of poly ADP-ribose polymerase-1 (PARP-1), procaspases-3, -8 and -9 and loss of mitochondrial membrane potential. CDDO-Me inhibited the expression of prosurvival phospho-AKT (p-AKT), phospho-mammalian target of rapamycin (p-mTOR) and nuclear factor-kappa B (NF-κB) (p65) signaling molecules and NF-κB-regulated antiapoptotic B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-xL), cellular inhibitor of apoptosis protein 1(c-IAP1) and survivin, but pre-treatment with NAC blocked the down-modulation of these signaling and antiapoptotic proteins by CDDO-Me. Together, these results indicate the pivotal role ROS play in the antiproliferative- and apoptosis-inducing activity of CDDO-Me in ovarian cancer cells; however, the role of ROS in the down-regulation of prosurvival AKT, mTOR, NF-κB and antiapoptotic BCL-2, BCL-xL, c-IAP1 and survivin warrants further investigation.


Assuntos
Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Neoplasias Ovarianas , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ácido Oleanólico/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Int J Oncol ; 41(6): 2191-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23076676

RESUMO

Emerging studies indicate that metabolism of arachidonic acid through the 5-lipoxygenase (5-Lox) pathway plays a critical role in the survival of prostate cancer cells raising the possibility that 5-Lox can be targeted for an effective therapy of prostate cancer. Wedelolactone (WDL), a medicinal plant-derived natural compound, is known to inhibit 5-Lox activity in neutrophils. However, its effect on apoptosis in prostate cancer cells has not been addressed. Thus, we tested the effects of WDL on human prostate cancer cells in vitro. We observed that WDL kills both androgen-sensitive as well as androgen-independent prostate cancer cells in a dose-dependent manner by dramatically inducing apoptosis. We also found that WDL-induced apoptosis in prostate cancer cells is dependent on c-Jun N-terminal Kinase (c-JNK) and caspase-3. Interestingly, WDL triggers apoptosis in prostate cancer cells via downregulation of protein kinase Cε (PKCε), but without inhibition of Akt. WDL does not affect the viability of normal prostate epithelial cells (PrEC) at doses that kill prostate cancer cells, and WDL-induced apoptosis is effectively prevented by 5-oxoETE, a metabolite of 5-Lox (but not by 15-oxoETE, a metabolite of 15-Lox), suggesting that the apoptosis-inducing effect of WDL in prostate cancer cells is mediated via inhibition of 5-Lox activity. These findings indicate that WDL selectivity induces caspase-dependent apoptosis in prostate cancer cells via a novel mechanism involving inhibition of PKCε without affecting Akt and suggest that WDL may emerge as a novel therapeutic agent against clinical prostate cancer in human.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Cumarínicos/farmacologia , Neoplasias da Próstata/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino
17.
J Exp Ther Oncol ; 10(1): 1-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22946339

RESUMO

Xanthohumol (XN), a prenylated chalcone present in hops exhibits anti-inflammatory, antioxidant and anticancer activity. In the present study we show that XN inhibits the proliferation of mouse lymphoma cells and IL-2 induced proliferation and cell cycle progression in mouse splenic T cells. The suppression of T cell proliferation by XN was due to the inhibition of IL-2 induced Janus kinase/signal transducers and activators of transcription (Jak/STAT) and extracellular signal-regulated kinase 1 and 2 (Erk1/2) signaling pathways. XN also inhibited proliferation-related cellular proteins such as c-Myc, c-Fos and NF-kappaB and cyclin D1. Thus, understanding of IL-2 induced cell signaling pathways in normal T cells, which are constitutively turned on in T cell lymphomas may facilitate development of XN for the treatment of hematologic cancers.


Assuntos
Proliferação de Células , Flavonoides/farmacologia , Interleucina-2/metabolismo , Propiofenonas/farmacologia , Linfócitos T , Animais , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Baço/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
18.
J Exp Ther Oncol ; 10(1): 51-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22946344

RESUMO

Oleanolic acid-derived synthetic triterpenoids are broad spectrum antiproliferative and antitumorigenic agents. In this study, we investigated the role of reactive oxygen species (ROS) in induction of apoptosis and inhibition of prosurvival Akt, NF-kappaB and mTOR signaling pro-teins by methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic cancer cells. Micromolar concentrations of CDDO-Me inhibited proliferation and induced apoptosis in MiaPaCa-2 and Panc-1 pancreatic cancer cells. Treatment with CDDO-Me caused the generation of hydrogen peroxide and superoxide anion and pretreatment of cells with NADPH oxidase inhibitor diphylene iodonium (DPI) or respiratory chain complex 1 inhibitor rotenone prevented ROS generation. Pretreatment with N-acetylcysteine (NAC) or overexpression of glutathione peroxidase (GPx) or superoxide dismutase-1 (SOD-1) blocked the antiproliferative effects of CDDO-Me. Likewise, NAC prevented the induction of apoptosis (annexin V-FITC binding and cleavage of PARP-1 and procaspases-3,-8 and -9) and reversed the loss of mitochondrial membrane potential and release of cytochrome c from mitochondria by CDDO-Me. CDDO-Me down-regulated p-Akt, p-mTOR and NF-kappaB (p65) but increased the activation of Erk1/2 and NAC blocked the modulation of these cell signaling proteins by CDDO-Me. Thus, the results of this study indicate that the antiproliferative and apoptosis inducing effects of CDDO-Me are mediated through a ROS-dependent mechanism and the role of ROS in modulation of signaling proteins by CDDO-Me warrants further investigation.


Assuntos
Acetilcisteína/farmacologia , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Ácido Oleanólico/administração & dosagem , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Superóxidos/metabolismo
19.
Biochem Biophys Res Commun ; 422(4): 561-7, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609405

RESUMO

Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/enzimologia , Supressão Genética , Telomerase/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas/genética , Telomerase/genética
20.
Biochem Biophys Res Commun ; 417(1): 570-5, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22177954

RESUMO

Our previous studies have shown that methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a oleanane synthetic triterpenoid induces apoptosis in prostate cancer cells by inhibiting the Akt/NF-κB/mTOR signaling cascade; however, the mechanism by which CDDO-Me inhibits Akt/NF-κB/mTOR signaling has remained undetermined. Present studies show that Akt plays a critical role in the response of prostate cancer cells to CDDO-Me. Silencing of Akt sensitized PC-3 cells to CDDO-Me, whereas its overexpression rendered them resistant to CDDO-Me. Evaluation of the effect of CDDO-Me on Akt which lies upstream of NF-κB and mTOR showed that CDDO-Me directly inhibits the Akt kinase activity in cell-free kinase activity assay and in vivo without modulating the activity of PDK1, the upstream kinase that phosphorylates and activates Akt. The inhibition of Akt activity resulted in inhibition of phosphorylation/inactivation of proapoptotic procaspase-9, Bad and Foxo3a. Further, inhibition of p-Akt by CDDO-Me was not attributable to an increase in the activity of protein phosphatase 2A (PP2A) or PH domain/leucine-rich repeat protein phosphatase1 (PHLPP1) both of which dephosphorylate p-Akt. These findings show that Akt is a direct target of CDDO-Me in the Akt/NF-κB/mTOR prosurvival signaling axis.


Assuntos
Antineoplásicos/farmacologia , Ácido Oleanólico/análogos & derivados , Neoplasias da Próstata/enzimologia , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Masculino , NF-kappa B/metabolismo , Ácido Oleanólico/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...